Choose date

Date
Lang.
Location
Price chage currency
Date: from 11.10.2016 to 14.10.2016
Language: English
Location:
Date: from 30.1.2017 to 2.2.2017
Language: English
Location:
Date: from 18.4.2017 to 21.4.2017
Language: English

Description

A professional level certification for networkers who are already CWNA certified and have a thorough understanding of RF technologies and applications of 802.11 networks. The CWAP curriculum prepares WLAN professionals to analyze, troubleshoot, and optimize any wireless LAN.

The CWAP Wireless LAN Analysis course consists of hands-on learning using the latest enterprise wireless LAN analysis and troubleshooting tools. This course takes an in-depth look at the functionality of WLANs, intended operation of the 802.11 protocol and Wi-Fi Alliance specifications, WLAN frame formatting and structure, troubleshooting methodology, and protocol analysis. It also includes extensive training in modern spectrum analysis with a focus on advanced RF behavior analysis, data collection methods, interpreting spectrum plots and charts, and understanding advanced features of WLAN spectrum analyzers.
Students who complete the course will acquire the necessary skills for analyzing, assessing, and troubleshooting wireless operation in the enterprise, utilizing hardware and software solutions from the industry’s leading manufacturers.

Objectives

Outline


Principles of WLAN Communication 802.11 Working Group
  • OSI reference model and the 802.11 PHY and MAC
  • Communication sublayers and data units
  • WLAN architecture components
  • Organization of station forwarding
  • Addressing and internetworking operation
  • Modern WLAN product architectures

Physical (PHY) and MAC Layer Formats and Technologies
  • Physical layer functions
  • Preamble function and format
  • Header purpose and structure
  • Analysis of PHY problems
  • Physical PPDU formats
    • 802.11b
    • 802.11a
    • 802.11g
    • 802.11n
  • MAC frame components
  • MAC encapsulation
  • Fields and subfields of the MAC header
  • Frame Control
  • Frame types and subtypes and their uses
  • Addressing
  • Frame body
  • Data frame format
  • Control frame format
  • Management frame format
  • Information elements and fields

Protocol Operation
  • Beaconing and synchronization
  • Scanning
  • Client state machine
  • 802.11 contention
  • QoS
  • Admission control
  • Band steering and airtime fairness mechanisms
  • Fragmentation
  • Acknowledgments and Block acknowledgments
  • Protection mechanisms and backward compatibility
  • Power management
  • Dynamic Frequency Selection (DFS) and Transmit Power Control (TPC)
  • Security components, methods, and exchanges
  • Roaming procedures exchanges
  • Future protocol enhancements

802.11n Transmit beamforming
  • Spatial multiplexing
  • Maximal Ratio Combining (MRC)
  • Space-Time Block Coding
  • 40 MHz channels
  • Frame aggregation
  • HT-OFDM format
  • Modulation and Coding Schemes (MCS)
  • HT frame formatting
  • And More

Protocol Analysis Tools and Methodology
  • Troubleshooting methodology
  • Protocol analyzer types
  • Analysis NIC/adapter selection and constraints
  • Interpreting results based on location
  • Analyzer settings and features
  • Filtering and channel scanning
  • Interpreting decodes
  • Using advanced analysis features
  • Assessing WLAN health and behavior factors
  • Evaluating network statistics
  • Troubleshooting common problems
  • Wired analysis to support wireless network issues

Spectrum Analysis Tools and Methodology
  • Radio frequency behavior review
  • Visualizing RF domains using spectrum measurement tools
  • Spectrum analyzer types and operation
  • Analyzer specifications and characteristics
  • Understanding spectrum data presentation
  • Interpreting plots and charts
  • Common WLAN spectrum analyzer features
  • Identifying transmit patterns
  • Device classification and network impact
  • Recognizing transmit signatures

Prerequisite Knowledge

CWNA required

Associated certifications